Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rust of flax and linseed caused by Melampsora lini.

Identifieur interne : 000138 ( Main/Exploration ); précédent : 000137; suivant : 000139

Rust of flax and linseed caused by Melampsora lini.

Auteurs : Gregory J. Lawrence [Australie] ; Peter N. Dodds ; Jeffrey G. Ellis

Source :

RBID : pubmed:20507505

Abstract

SUMMARY

Melampsora lini, while of economic importance as the causal agent of rust disease of flax and linseed, has for several decades been the 'model' rust species with respect to genetic studies of avirulence/virulence. Studies by Harold Flor demonstrated that single pairs of allelic genes determine the avirulence/virulence phenotype on host lines with particular resistance genes and led him to propose his famous 'gene-for-gene' hypothesis. Flor's inheritance studies, together with those subsequently carried out by others, also revealed that, in some cases, an inhibitor gene pair and an avirulence/virulence gene pair interact to determine the infection outcome on host lines with particular resistance genes. Recently, avirulence/virulence genes at four loci, AvrL567, AvrM, AvrP4 and AvrP/AvrP123, have been cloned. All encode novel, small, secreted proteins that are recognized inside plant cells. Yeast two-hybrid studies have shown that the AvrL567 proteins interact directly with the resistance gene protein. The molecular basis of Flor's gene-for-gene relationship has now been elucidated for six interacting gene pairs: those involving resistance genes L5, L6, L7, M, P and P2, where both the resistance gene and the corresponding avirulence gene have been cloned. In other inheritance studies it has been shown that M. lini does not possess a (+) and (-) mating system, but may possess a two factor system. Double-stranded (ds) RNA molecules occur in many strains of M. lini: examination of the progeny of one strain that possesses 11 dsRNA molecules revealed that they fall into three transmission units, designated L, A and B. The L unit consists of a single large dsRNA of 5.2 kbp while the A and B units each consist of five dsRNAs in the size range 1.1-2.8 kbp. The three units have different sexual and asexual transmission characteristics. The L unit is encapsidated in a virus-like particle, whereas the other units are not encapsidated. The population and coevolutionary aspects of M. lini on a wild, native Australian host species, Linum marginale, have been extensively investigated. A recent molecular analysis revealed that the M. lini isolates from L. marginale fall into two distinct lineages, one of which is apparently hybrid between two diverse genomes. Isolates in this lineage are largely fixed for heterozygosity, which suggests that sexual recombination does not occur in this lineage.


DOI: 10.1111/j.1364-3703.2007.00405.x
PubMed: 20507505


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rust of flax and linseed caused by Melampsora lini.</title>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. greg.lawrence@csiro.au</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601</wicri:regionArea>
<wicri:noRegion>Canberra ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:20507505</idno>
<idno type="pmid">20507505</idno>
<idno type="doi">10.1111/j.1364-3703.2007.00405.x</idno>
<idno type="wicri:Area/Main/Corpus">000148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000148</idno>
<idno type="wicri:Area/Main/Curation">000148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000148</idno>
<idno type="wicri:Area/Main/Exploration">000148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rust of flax and linseed caused by Melampsora lini.</title>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. greg.lawrence@csiro.au</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601</wicri:regionArea>
<wicri:noRegion>Canberra ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SUMMARY</b>
</p>
<p>Melampsora lini, while of economic importance as the causal agent of rust disease of flax and linseed, has for several decades been the 'model' rust species with respect to genetic studies of avirulence/virulence. Studies by Harold Flor demonstrated that single pairs of allelic genes determine the avirulence/virulence phenotype on host lines with particular resistance genes and led him to propose his famous 'gene-for-gene' hypothesis. Flor's inheritance studies, together with those subsequently carried out by others, also revealed that, in some cases, an inhibitor gene pair and an avirulence/virulence gene pair interact to determine the infection outcome on host lines with particular resistance genes. Recently, avirulence/virulence genes at four loci, AvrL567, AvrM, AvrP4 and AvrP/AvrP123, have been cloned. All encode novel, small, secreted proteins that are recognized inside plant cells. Yeast two-hybrid studies have shown that the AvrL567 proteins interact directly with the resistance gene protein. The molecular basis of Flor's gene-for-gene relationship has now been elucidated for six interacting gene pairs: those involving resistance genes L5, L6, L7, M, P and P2, where both the resistance gene and the corresponding avirulence gene have been cloned. In other inheritance studies it has been shown that M. lini does not possess a (+) and (-) mating system, but may possess a two factor system. Double-stranded (ds) RNA molecules occur in many strains of M. lini: examination of the progeny of one strain that possesses 11 dsRNA molecules revealed that they fall into three transmission units, designated L, A and B. The L unit consists of a single large dsRNA of 5.2 kbp while the A and B units each consist of five dsRNAs in the size range 1.1-2.8 kbp. The three units have different sexual and asexual transmission characteristics. The L unit is encapsidated in a virus-like particle, whereas the other units are not encapsidated. The population and coevolutionary aspects of M. lini on a wild, native Australian host species, Linum marginale, have been extensively investigated. A recent molecular analysis revealed that the M. lini isolates from L. marginale fall into two distinct lineages, one of which is apparently hybrid between two diverse genomes. Isolates in this lineage are largely fixed for heterozygosity, which suggests that sexual recombination does not occur in this lineage.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">20507505</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>05</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rust of flax and linseed caused by Melampsora lini.</ArticleTitle>
<Pagination>
<MedlinePgn>349-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1364-3703.2007.00405.x</ELocationID>
<Abstract>
<AbstractText Label="SUMMARY" NlmCategory="CONCLUSIONS">Melampsora lini, while of economic importance as the causal agent of rust disease of flax and linseed, has for several decades been the 'model' rust species with respect to genetic studies of avirulence/virulence. Studies by Harold Flor demonstrated that single pairs of allelic genes determine the avirulence/virulence phenotype on host lines with particular resistance genes and led him to propose his famous 'gene-for-gene' hypothesis. Flor's inheritance studies, together with those subsequently carried out by others, also revealed that, in some cases, an inhibitor gene pair and an avirulence/virulence gene pair interact to determine the infection outcome on host lines with particular resistance genes. Recently, avirulence/virulence genes at four loci, AvrL567, AvrM, AvrP4 and AvrP/AvrP123, have been cloned. All encode novel, small, secreted proteins that are recognized inside plant cells. Yeast two-hybrid studies have shown that the AvrL567 proteins interact directly with the resistance gene protein. The molecular basis of Flor's gene-for-gene relationship has now been elucidated for six interacting gene pairs: those involving resistance genes L5, L6, L7, M, P and P2, where both the resistance gene and the corresponding avirulence gene have been cloned. In other inheritance studies it has been shown that M. lini does not possess a (+) and (-) mating system, but may possess a two factor system. Double-stranded (ds) RNA molecules occur in many strains of M. lini: examination of the progeny of one strain that possesses 11 dsRNA molecules revealed that they fall into three transmission units, designated L, A and B. The L unit consists of a single large dsRNA of 5.2 kbp while the A and B units each consist of five dsRNAs in the size range 1.1-2.8 kbp. The three units have different sexual and asexual transmission characteristics. The L unit is encapsidated in a virus-like particle, whereas the other units are not encapsidated. The population and coevolutionary aspects of M. lini on a wild, native Australian host species, Linum marginale, have been extensively investigated. A recent molecular analysis revealed that the M. lini isolates from L. marginale fall into two distinct lineages, one of which is apparently hybrid between two diverse genomes. Isolates in this lineage are largely fixed for heterozygosity, which suggests that sexual recombination does not occur in this lineage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Gregory J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. greg.lawrence@csiro.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20507505</ArticleId>
<ArticleId IdType="pii">MPP405</ArticleId>
<ArticleId IdType="doi">10.1111/j.1364-3703.2007.00405.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20507505
   |texte=   Rust of flax and linseed caused by Melampsora lini.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20507505" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024